The Recovery Of ‘aurora’ (April 2001 | Volume: 52, Issue: 2)

The Recovery Of ‘aurora’

AH article image

Authors: The Readers

Historic Era:

Historic Theme:

Subject:

April 2001 | Volume 52, Issue 2

At 7:45 A.M. on May 24, 1962, Aurora 7 blasted off Launch Pad 14 at Cape Canaveral, Florida. The prelaunch countdown had been the smoothest of any American space mission to that date. While some 40 million people watched on television, Lt. Cmdr. M. Scott Carpenter—the fourth American (and sixth human being) in space—began a three-orbit flight.

At the same time, two 12-man crews were preparing to take off in P2V-7 aircraft from the naval station at Roosevelt Roads in eastern Puerto Rico. Their mission was to pinpoint Carpenter’s location when Aurora 7 splashed down in the Atlantic. The scheduled landing point, about 75 miles north of San Juan, was at the center of a 200-mile ellipse running from northwest to southeast along the flight path of the returning capsule. I was the pilot in command of the plane assigned to await the recovery about 50 miles from the northwest end; Lt. Jimmy Hickman’s P2V would wait the same distance from the southeast end. We were at our posts about 90 minutes before the expected time of the splashdown.

While waiting for Carpenter’s arrival, our crews settled into a familiar routine, keeping the coffeepots going and checking out our equipment, chief among it a specially installed SARAH system and our standard APS-20 radar. SARAH (search and rescue and homing) had been developed by the British for rescuing downed airmen. It was a small radio transmitter, about the size of a deck of cards, for Project Mercury flights, placed outside the astronaut’s capsule but inside the re-entry heat shield, while a highly sensitive receiving system had been installed in the P2Vs assigned to recovery missions. APS-20 radar had been designed to seek very small targets on the ocean’s surface, specifically submarine snorkels and periscopes. If SARAH failed, this radar would be used to search for the capsule, the astronaut in a raft, or, in the worst case, debris.

“Until Aurora 7 reached the communication range of the Hawaiian station on the third pass,” the NASA official history tells us, “Christopher Kraft, directing the flight from the Florida control center, considered this mission the most successful to date; everything had gone perfectly except for some overexpenditure of hydrogen peroxide fuel.” This fuel powered the thrusters used to adjust the spacecraft’s attitude with respect to the earth and flight direction. The desired attitude for firing retro-rockets (reverse thrust) to start re-entry into the atmosphere was a 34-degree pitch angle and zero-degree yaw angle—that is, the capsule aligned exactly along the flight path. Aurora 7’s gauges showed 40 percent of its fuel remaining when things started to go seriously wrong.

Carpenter began aligning his spacecraft for re-entry by shifting to automatic mode, but the automatic stabilization system refused to hold the proper re-entry attitude. He frantically tried to determine what was wrong and discovered that he had forgotten to turn off the