Authors:
Historic Era:
Historic Theme:
Subject:
| Volume , Issue
Authors:
Historic Era:
Historic Theme:
Subject:
| Volume , Issue
Every time we call a computer glitch a bug, we should give a little nod to the “Grand Lady of Software.” Because if it wasn’t for Grace Hopper and the moth she found wedged in the hulking Mark II computer’s relay, the computer bug might have been known by any other name.
Hopper’s influence goes far beyond the bug. Hopper played such a significant part in the early history of computing that her influence, like technology itself, appears everywhere. Her resume would say she was a computer programmer—and she was—as important to the development of computers as Charles Babbage and Ada Lovelace. But her voice and vision are apparent in both technology and the way we talk about it.
Long before Apple popularized the slogan Think Different and being “disruptive” became a Silicon Valley mantra, Hopper lectured students, colleagues, and technology companies against using what she called “the most damaging phrase in the language.” What was this cardinal sin of innovation? “We’ve always done it this way.” Hopper was so adamant about banning the phrase, that she, dressed in her full navy uniform, often threatened to—poof!—”come back and haunt” the poor souls who dared to utter the phrase. In any case, the idea has remained a core tenet of technology. Today, the worst thing you can say about a new idea is that it’s safe. As a constant reminder to rethink even those things we consider fundamental, Hopper’s office clock ticked counterclockwise.
“It’s always easier to ask forgiveness than it is to get per-mission” is another well-known Hopperism—and one she practiced long before fine-tuning its expression. When Hopper was a child, she was powerfully drawn to gadgets. At age seven, she wanted to know how an alarm clock roused her family out of bed each morning. So Hopper took the thing apart. When she couldn’t put it back together again, she dismantled another one.
Still stumped, she tried another. When she’d pulled the screws and springs from seven machines, Hopper’s mother made a deal with the child: she could tinker with one.
Supported by a mathematics-loving mother and an encouraging father, Hopper started at Vassar at age seventeen, earning a degree in mathematics in 1928. From there she went to Yale, knocking out both a master’s and a PhD in mathematics (the school’s first woman to do so) before returning to Vassar to teach math, the subject she loved.
For Hopper, everything changed when Japan bombed Pearl Harbor in 1941. Hopper, at age thirty-four, wanted to do something tangible for her country; she wanted to enlist. Sure, the
government thought that her vocation as a math professor was too important to leave. Sure, she was sixteen pounds underweight and, by average enlistment standards, very old. But Hopper was confident and determined. She wrangled a leave of absence from Vassar, arranged a waiver for her weight, and in December 1943 succeeded in joining the US Naval Reserve.
In the Reserve, Hopper was assigned a post in the Bureau of Ships Computation Project at Harvard University. Her